Shifting Time Series Data
In time series analysis, shifting is a process of re-arranging time series data with some lag $n$ typically
inorder to perform comparison (Year over Year, Month over Month) or implement a differencing operation.
Generating time series data
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
ts_index = pd.date_range( '2013-01-01', '2021-01-01', freq='Y' )
data = np.random.randint(56, 109, size=8)
ts_data = pd.DataFrame(data=data, index=ts_index, columns=['yearly_sales'])
ts_data
|
yearly_sales |
| 2013-12-31 |
80 |
| 2014-12-31 |
93 |
| 2015-12-31 |
98 |
| 2016-12-31 |
66 |
| 2017-12-31 |
86 |
| 2018-12-31 |
96 |
| 2019-12-31 |
77 |
| 2020-12-31 |
88 |