Matrix-Vector Multiplication
Matrix vector multiplication is a widely used linear algebra property particularly in regression modeling where a vector of parameters is multipled to a matric of features to predict outcomes.
Suppose a matrix A and a vector b given as:
A=(a1,1a1,2a2,1a2,2a3,1a3,2),b=(b1b2)
Their product is:
C=Ab=(a1,1∗b1+a1,2∗b2a2,1∗b1+a2,2∗b2a3,1∗b1+a3,2∗b2)
Example:
Given matrix A and vector b as:
A=(231569),b=(23)
Then:
C=Ab=(2∗2+3∗31∗2+5∗36∗2+9∗2)=(4+92+1512+27)=(131739)
Implementation in Numpy
import numpy as np A = np.array([2,3,1,5,6,9]).reshape(3,2) b = np.array([2,3]) A.dot(b)