Processing math: 100%

Matrix-Vector Multiplication

Matrix vector multiplication is a widely used linear algebra property particularly in regression modeling where a vector of parameters is multipled to a matric of features to predict outcomes.

Suppose a matrix A and a vector b given as:

A=(a1,1a1,2a2,1a2,2a3,1a3,2),b=(b1b2)

Their product is:

C=Ab=(a1,1b1+a1,2b2a2,1b1+a2,2b2a3,1b1+a3,2b2)

Example:

Given matrix A and vector b as:

A=(231569),b=(23)

Then:

C=Ab=(22+3312+5362+92)=(4+92+1512+27)=(131739)

Implementation in Numpy

import numpy as np
A = np.array([2,3,1,5,6,9]).reshape(3,2)
b = np.array([2,3])

A.dot(b)
array([13, 17, 39])